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Using reflection interference contrast microscopy, we studied the thermal fluctuations of giant vesicles
that weakly adhere to flat solid substrates. The absolute membrane-substrate separation distance was
imaged and the average contact contour, including the contact area, the contact rounding, and the
asymptotic contact angle, was determined. The static fluctuations in the flat, adhering part of the vesicle
were analyzed. The spectrum of mean square amplitudes yielded the lateral membrane tension and the
second derivative of the interaction potential. The vertical roughness and lateral correlation length were
measured from the spatial autocorrelation of the undulations. The roughness was shown to obey the
behavior predicted by functional renormalization in the observed tension regime of 1076 to 10™* J/m>.
Moreover, the measured separation distances can be explained within the framework of undulation and
van der Waals forces and confirmed the model of tension-induced adhesion. However, the adhesion en-
ergies as well as the measured separation distances exhibit a weaker dependence on the membrane ten-

sion than predicted.

PACS number(s): 68.10.—m, 68.45.Kg, 42.30.—d

INTRODUCTION

During the last decade the physics of lipid membranes
has received much attention. The wide interest in this
field is due to the many different functions membranes
fulfill in biology, and to the fact that they belong to the
class of soft interfaces such as occur in microemulsions,
liquid crystals, and polymer systems.

The original idea of Helfrich that soft membranes ex-
hibit steric interactions stimulated the exploration of the
statistical physics of membranes [1]. Membranes tend to
repel each other by their thermal out-of-plane fluctua-
tions in a way similar to the steric polymer interaction.
In the course of more detailed theoretical studies in this
field, universal scaling behavior as well as new phase
transitions and complex phase diagrams were predicted
[2]. Distinctions have to be made regarding whether a
membrane is fluid, i.e., allowing lateral diffusion of its
components, or is tethered, i.e., exhibiting shear elasticity
through in-plane bonding. In this article we are con-
cerned with the fluctuation-controlled interaction of fluid
membranes with solid substrates.

Membrane systems that are accessible for experimental
studies include liposomes and vesicles, microemulsions,
lamellar liquid crystals, substrate supported membranes,
and biological cells such as red blood cells [3]. The first
indications for a steric interaction came from optical mi-
croscopy studies of fluid membranes, where membranes
in multilamellar structures are found to repel each other
[4]. The analysis of the observable thermal fluctuations
of vesicles, also called “flickering,” showed agreement
with the model of thermally excited fluctuations and al-
lowed high precision measurements of the bending modu-
li of lecithin membranes [5—-8]. Careful small angle x-ray
studies on the dilution of lamellar liquid crystals by in-
creasing the water content showed furthermore that the
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distance versus bulk compressibility data were in good
quantitative agreement with the steric force law derived
by Helfrich [9].

The fluctuation-induced repulsion plays an important
part in stabilizing vesicle suspensions. van der Waals
(vdW) attraction is often overcome by the undulation
force for membranes composed of neutral lipids in
nonionic solutions. On the other hand, vesicles under
tension adhere to each other due to the suppression of the
fluctuation-induced force [10]. Evans and co-workers
used the micropipette technique to measure the adhesion
energy under controlled tension [11]. The model of
tension-induced adhesion, however, was found to be
difficult to prove quantitatively. Measurements of the
contact angle between adhering vesicles reveal a remark-
able constancy of the contact angle over a wide range of
vesicle tensions that cannot be explained in terms of vdW
and steric interaction [10,12]. This discrepancy also led
to the hypothesis of a hidden microroughness [10].

In this article we apply reflection interference contrast
microscopy (RICM) to investigate the weak interaction of
giant phosphatidylcholine vesicles with flat substrates.
With this interferometric technique vesicles are observed
with monochromatic light incident and reflected from
below. The interference micrographs exhibit Newton in-
terference fringes that allow determination of the
membrane-substrate separation distance [13]. We mea-
sured the vesicle area in contact with the substrate and its
contour at the edge of the contact area. By analyzing se-
quences of momentary height profiles of the part of the
vesicle adjacent to the flat substrate, the two-dimensional
spatial spectrum of the out-of-plane fluctuations of the
membrane was obtained. From the mean square ampli-
tudes of the fluctuations, the membrane tension and the
second derivative of the interaction potential were mea-
sured. The vertical roughness and the lateral correlation
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length of the undulations can also be obtained directly
from the autocorrelation function.

It was found that the tension measured from the fluc-
tuation spectrum was in agreement with the measured
roughness behavior that exhibited a logarithmic depen-
dence as a function of the separation distance. The mea-
sured separation distances can be explained by superposi-
tion of the undulation forces of membranes under tension
with the vdW attraction. However, the functional depen-
dence of the separation distance seems to be weaker than
predicted by the simple superposition model. The
adhesion energies can be calculated by the Young-Dupre
equation using the observed contact angles and measured
tensions. A quadratic dependence of the adhesion energy
on the membrane tension is found.

In summary, our technique allows us to measure six
parameters of an adhering vesicle independently, i.e., the
membrane tension, the harmonic approximation of the
interaction potential (or alternatively the lateral correla-
tion length &, and the vertical roughness amplitude &) of
the thermal membrane undulations, as well as the
membrane-substrate separation distance, the contact an-
gle, the diameter of the vesicle, and the diameter of the
adhesion area.

THEORETICAL BACKGROUND

The statistical physics of membranes has been reviewed
in several articles [2]. In this theoretical section we limit
ourselves to the physics of one fluid membrane interact-
ing with a flat solid substrate. First we consider the static
fluctuation spectrum of an idealized “piece of membrane”
in an attractive wall potential. We then describe the
effective interaction potential between the membrane and
the substrate by the superposition of the steric interaction
of a membrane with a hard wall and the van der Waals
attraction. In the last section we discuss the adhesion of
giant vesicles to a substrate. Closed membranes are sub-
ject to topological constraints that lead to new boundary
conditions and defined shapes [14]. However, the fluctua-
tions of the flat part of the vesicle adjacent to the sub-
strate can be approximately described by the equations
derived for infinite membranes.

Static frequency spectrum of fluid membranes

Figure 1 depicts an oriented flat piece of membrane
above a substrate. The membrane contour is described
by the distance s (x) from the substrate to the membrane
perpendicular to the in-plane vector x=(x,x,) (the so-
called Monge representation). In the following we are
concerned with the thermally driven undulations around
the mean separation distance. We denote the local dis-
placement amplitudes A(x)=s(x)—{s(x)),. If an arbi-
trary observation area 4 =L? is chosen the undulations
can be decomposed into discrete Fourier components
defined by

h(x)=hee'™,
4 (1
hy=—7 [ d*xhixe .
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FIG. 1. Schematic diagram of a soft lipid membrane over a
solid substrate. The membrane contour is described by its
substrate-membrane separation distance s(x). The amplitudes
of the undulations about the mean position are denoted by A (x).
Thermal fluctuations lead to a repulsive steric interaction.

The magnitudes of the wave vector q=(gq, ,q, ) takes
xl qxl

values 2w /L(k,l), with k,! integers and hq=h iq, since
h (x) is real.

The free energy of the system is comprised of the elas-
tic curvature energy, the surface tension energy, and the
direct substrate-membrane interaction. The total free en-
ergy reads

F(h(x)= [d*x{1K (VhP+La(VRP+V(R)},  (2)

where K, is the bending modulus, o the membrane ten-
sion, and V (k) the interaction potential. It is convenient
to replace the interaction potential by its harmonic ap-
proximation 1V"=(3%/0h?)V,_, around the mean
membrane-wall separation distance (s(x)). This har-
monic approximation is justified later.

Inserting expansion Eq. (1) into Eq. (2) yields for the
free energy

F(h))=A4 [d*q{K,q*+og>+V"}LIh, 2, 3)

where q=\/ q,fl +q32 denotes the wave vector. The

thermal average of the square of the Fourier amplitudes
for each wave vector can be calculated from Eq. (3). Ap-
plying the equipartition theorem the static power spec-
trum of the mean square amplitudes is given by

h2)= . @)
thy) A{K.q*+oq®+V"}

The power spectrum depends on the parameters K,,0,
and V'’ and exhibits distinctive regimes, where each of
the parameters dominates depending on the wave vector
g. Note that the area A over which the Fourier transfor-
mation is carried out can be arbitrarily chosen and acts as
a normalization factor.

vdW and steric interaction

In the absence of electrostatic surface charges the only
long-ranged direct interaction is the van der Waals in-
teraction. Taking into account the finite thickness d of
the membrane and assuming that the substrate extends
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infinitely in one direction, the vdW interaction is given by

—, 5
s2 (s+d)? )

where Ay is the Hamaker constant. For biological ma-
terial immersed in water Ay is of the order (1-4)kT. At
large distances (s> ~5 nm) retardation decreases the
nonzero-frequency part of the Hamaker constant. There-
fore a lower limit for very large separations is given by
A, =0)y=+kT in the case of dielectrics in aqueous solu-
tion [15]. In the presence of ions the van der Waals in-
teraction is furthermore screened as described by Mahan-
ty and Ninham [16]. The effective Hamaker constant is

AF(0)= A4(0)(2kps Jexp(—2kps)

for kps > 1 with k! being the Debye screening length.

The second interaction to be considered is the steric in-
teraction of undulating membranes. It arises from the
thermally excited out-of-plane fluctuations that repel the
membrane from the hard wall. In order to derive
the steric interaction it is helpful to consider the
height-autocorrelation function of the membrane
C(x)={h(x)h(0)). The autocorrelation function can be
directly obtained by Fourier transformation of the fre-
quency spectrum of the thermal surface roughness al-
ready described by Eq. (4) (the Wiener-Khinchin
theorem). In a simplified form C(x) is approximated by
its exponential asymptotic behavior:

~—x/§”

C(x)=(h(x)h(0))=Ele (6)

Two lengths are introduced: the lateral correlation
length £, and the vertical roughness amplitude §,. Both
length scales can be expressed in terms of the parameters
V",0, and K,. Approximate expressions can be given
[17] depending on whether the membrane tension is large
or small compared to the bending modulus, with a cross-
over tension given by * =1/4K_V"". It follows from Eq.
(4) that

kT

——— foro<o* 7
5%: 8,\/KC VII ( a)
2:1; In(20 /0*) for o >0*, (7b)
and
@K /v for o <o* (8a)
"oy for o>t . (8b)

For small tensions o <o * the characteristic length scales
are dominated by the bending rigidity while for large ten-
sions o >o0* the lengths are tension dominated. Equa-
tions (7) and (8) can be combined to obtain the inter-
dependence of §, and &;:
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kT e (9a)
i 16K, | foro<o
§i= kT

mln(ogu/Kc) forc>o0* . (9b)

In the zero-tension limit, Eq. (9a) states a universal scal-
ing law & l~§ﬁ with roughness exponent {=1 [8].

We will now consider the interaction between two flat
membranes that are not trapped in a potential, but locat-
ed close to each other. From the description above, an
undulating surface can be pictured as a surface with ran-
dom humps of typical height £, extending over an area
Ag zgﬁ. In the original Helfrich work these humps were
interpreted in terms of independent particles that exert
an ideal gas pressure, Py .. ~kT / §ﬁ [1,19]. The distance
dependence of this steric interaction is derived by substi-
tution of §, through Eq. (9a) and by assuming a constant
ratio c¢; of the roughness &, to the separation distance
&, =c,{(s). The steric interaction energy per area is
given by

(kT)?

Vstericzcﬂ KC(S>2 : (10)

Here cy denotes a dimensionless prefactor that deter-
mines the strength of the fluctuation-induced interaction.
This prefactor was estimated by Helfrich as
cq=3m*/128=0.231 for two interacting membranes with
bending modulus K, [1,9]. The fluctuation-induced in-
teraction is recovered by functional renormalization of
the hard-wall interaction and leads to the same inverse
square dependence on the separation distance. Monte
Carlo simulations of the steric interaction yield slightly
smaller prefactors. Lipowsky and Zielinska found
cq=0.116 [20], Janke and Kleinert cq=0.074 [21], and
Gompper and Kroll ¢;=0.0798 [22]. In an analytical
study Podgornik and Parsegian find ¢z =0.043 [23].

In the presence of membrane tension the roughness
behavior £,(s) changes from a linear to a logarithmic
dependence on the membrane separation. A crossover
length scale for this case is given by [, =V'kT /2mo
[17,25].

c,{s) for £ <I, (11a)
— < > 172
b ly 2; +4In(<s) /1) for £,>1, .  (11b)

The steric free energy for finite tension is again ob-
tained from the ansatz P sz/gﬁ. Following the
same steps as before, applying Egs. (9b) and (11b) leads to
[17,25]

kBTO' —
e

= o1, /17 for £,>1, . (12)

(o8 —
steric ~ b fl

c

The interaction energy decays exponentially with the
mean separation distance (s ). It can be shown that the
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prefactor by is related to the prefactor in the case without
tension through bg=4mcqc? [17,25]. For a single mem-
brane interacting with a hard wall by a short-ranged at-
tractive interaction the ratio cg=1 was found [24,25].
Furthermore, the effective bending modulus of two inter-
faces with different bending modulus K; and K, is given
by K.=2K,K,/(K;+K,). Therefore, in the case of a
single membrane interacting with a rigid wall (K;=K,
and K, = =), the effective bending modulus is twice the
modulus of one membrane K =2K,. The strength of
the steric interaction of one membrane under tension
with a hard wall is hence well approximated by
bg=2mcqc? ~0.085. Qualitatively any tension drastical-
ly diminishes both the strength and the range of the un-
dulation forces. In fact any finite tension will change the
unbinding behavior of membranes. Exact renormaliza-
tion group theory predicts a continuous unbinding transi-
tion for the zero-tension limit [18]. In contrast, a first or-
der unbinding transition is expected for finite tension
[26].

The total interaction potential of a membrane under
tension and a solid flat substrate can be approximated by
simple superposition of the vdW interaction and the ster-
ic interaction. The superposition as opposed to a
rigorous renormalization approach is valid if the fluctua-
tions are weak, which for membranes under tension is al-
ways the case [26]. For the experimental situation as de-
scribed later on it is also of interest to consider the gravi-
tational force, as vesicles can exhibit a density difference
with respect to the buffer solution. The free energy is
given by a linear potential provided the shape of the vesi-
cle does not change with the mean separation distance,
Vrav=—88p{s)Vy/Ac. Here V), / Ac denotes the ra-
tio of volume and contact area. The total interaction en-
ergy now reads

Vtotal ~ Vsteric + VvdW + Vgrav . (13)

The three interaction potentials and their superposition
are shown in Fig. 2 for a particular set of parameters
(6=1.7X10"° J/m?, Ay=2.6X10"%! J/m? c=10"*

0.6
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FIG. 2. The total interaction potential calculated by superpo-
sition of van der Waals interaction (dashed line), steric interac-
tion (full line), and gravitation (dashed line). The superposition
(full line) exhibits a minimum that moves towards smaller values
as the tension increases. (oc=1.7X10"° J/m? K.=35kT,
bg=0.085, A;=2.6X10"2! J, ¢=10"* molar, D,,=20 um,
D, =10 um, Ap=0.007 g/cm?).
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molar, Ap=0.007 g/cm®, bya=0.085,D,,=20 pum,
D =10 pm). In the range of these values the superposi-
tion yields a minimum at a remarkably large separation
distance. The position of the minimum decreases with in-
creasing tension, while the depth and curvature of the
minimum increase. Note that the contribution of the
gravitation is weak and does not strongly affect the posi-
tion of the minimum. A membrane in this kind of bound
state will exhibit a fluctuation spectrum as given by Eq.
(4). The parameter V'’ corresponds to the curvature of
the minimum of the interaction energy. From Fig. 2 it
can also be seen that the harmonic approximation for the
interaction V,,,, made earlier to obtain Eq. (4) from Eq.
(2) is justified. The depth of the minimum shown in Fig.
2 can be considered to first approximation as the
adhesion energy per area of the membrane.

Adhering vesicles

In the case of vesicles adhering to a substrate only the
adjacent part of the vesicle is subject to the interaction
potential as described above. The overall shape of the
vesicle at an attractive wall is determined by the bending
modulus of the membrane as well as the constraints of
constant surface area and constant enclosed volume. The
vesicle gains adhesion energy by increasing its contact
area but pays for the shape change through bending ener-
gy. The equilibrium shape of adhering vesicles has been
studied theoretically in detail [14]. It can be shown that a
general boundary condition holds for the shapes of
minimal free energy. Due to the elastic bending energy
the membrane will not meet the solid surface at a sharp
contact angle, but rather exhibits a contact curvature de-
scribed by the radius of curvature R.. For radii small
compared to the dimensions of the vesicle the following
equation holds:

R.=VK,/2W, . (14)

However, on a larger scale an effective contact angle 34
defined by the tangent of the contact contour can be
defined for which the well-known Young-Dupre equation
holds:

W =0(1—costy) , (15)

where o denotes the membranes tension and W, the
adhesion energy per area.

As shown by Eq. (15), adhesion induces tension in the
membrane. The elastic response of the free part of the
vesicle membrane to tension is twofold. First, tension
will reduce the excess area consumed by the thermal fluc-
tuations and, secondly, high tension will eventually
stretch the actual membrane area. The apparent dilation
a=(A—Ay)/ Ay, i.e., the relative change in area pro-
jected at the equilibrium contour of the vesicle, can be
written as follows [10,27,28]:

2
o= =leaa+1

. 16
4, 87K, K. K, (16

The first term on the right side of Eq. (16) describes the
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entropic excess area that is taken up by the undulations
and that is pulled out by tension. The length a is a mi-
croscopic length scale that determines the short-
wavelength cutoff of the undulations. The second term
denotes the elastic stretching of the lipid bilayer with the
elastic area dilation modulus K,. Equation (16) can also
be used to determine the ‘“‘effective tension,” if the area
dilation « is fixed by boundary conditions. A vesicle that
is only slightly deflated, such that the boundary condi-
tions of fixed volume and fixed surface area restrict the
undulations, can be described as being subject to an
effective tension according to Eq. (16).

It must be noted that the effective tension has to be
worked out in a self-consistent way, since the excess area
depends on the adhesion energy and the adhesion energy
depends on the tension. However, a rigorous theory of
the equilibrium shape of adhering vesicles including fluc-
tuations does not exist yet.

EXPERIMENTAL

Microscope setup and image processing

Adhering vesicles were observed with RICM combined
with phase contrast microscopy. Reflection interference
allows visualization and measurement of the adjacent
contact contour of the vesicle. Phase contrast microsco-
py images the lateral circumference of the vesicle. The
two microscopic techniques can be applied simultaneous-
ly choosing alternatingly epi- or dia-illumination, respec-
tively.

We used an inverted Zeiss Axiomat microscope
equipped with a Zeiss Neofluar 63/1.25 Antiflex objec-
tive. Epi-illumination was provided by a 100 W high
pressure mercury lamp. The green 546.1 nm Hg line was
selected by a bandpass filter (dv=5 nm, 85%) for
reflection interference. The illumination aperture was ad-
justed to its smallest value of IN 4 =~0.48. Phase contrast
microscopy was performed with conventional Kohler il-
lumination. Since the Antiflex objective had no built-in
phase ring a phase ring was placed in an artificial back fo-
cal plane.

A detailed quantitative analysis of the RICM images of
membranes has been given recently by us [13]. The sur-
face profile can be obtained from the measured intensi-
ties. A schematic view of the technique is given in Fig. 3.
The image is formed by interference of the light reflected
from the membrane and from the substrate. The intensi-
ty of the interference pattern can be written in the form

I(s(x))=I,+1,+2V'I,I,cos[2ks(x)—8,+8,], (17

where the term in square brackets denotes the phase
difference due to the difference in the cptical path
2ks =4mns /A. The intensities and initial phases of the
beams 1,,8, and I,,8, can be calculated using Fresnel
equation for layered dielectrics [29]. As an example, Fig.
3(b) shows the interference function Eq. (17) with and
without a magnesium fluoride layer coating the glass sur-
face. It is apparent that the interference function can be
shifted by an appropriate substrate structure [13]. We
have chosen the thickness of the magnesium fluoride lay-
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FIG. 3. Schematic view of image formation in reflection in-
terference contrast microscopy. (a) Formation of image by in-
terference of light reflected from the substrate (I,) and from the
membrane (I,). (b) Relative intensity reflected from a phospho-
lipid membrane versus distance above the substrate for glass
(solid line) and glass coated with 60 nm MgF, (dashed line).

er in such a way that the intensity increases monotonical-
ly with the membrane-substrate separation distance in
the range 0 <s <100 nm. The distance s(x) can be calcu-
lated from the measured intensities I (x); we obtain from
Eq. (17)

2I(x)—I
I

max +Imin )

—1I

A
s(x)=z;;l— arccos +6,—6,

max min

(18)

The values I_,, and I_; may be calculated or taken from
the observed interference picture. Equation (18) provides
a gauge function that, once established for a given
substrate-membrane system, related the intensities to
heights.

Data processing

Images were recorded by a charge-coupled device
(CCD) camera (HR480, Aqua TV, Germany) and a
Panasonic video recorder with standard video rating (25
Hz). Images were read into a Macintosh Quadra using
the Pixelpipeline frame grabber (Perceptics Co.). Regions
of 256X256 pixels were selected and a sequence of 64
frames stored in real time.

Height images as obtained in the previous section are
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digitized and read into the computer via frame grabber
card. Each two-dimensional picture consists of 480X 630
picture elements (pixels) indexed by (m,n) and each hav-
ing an integer H (m,n) proportional to the separation dis-
tance attributed. A pixel corresponds to a quadratic field
with length dx =dy =94 nm in real space. Movies of
flickering adhering vesicles are analyzed by choosing a re-
gion of N XN pixels in the adhering part of the vesicle
and taking a sequence of height images H(m,n,t;) at
times ¢ (j=1,...,M). The discrete Fourier transform
of the height values in the selected N XN field is deter-
mined according to Eq. (1):

N—1N—1

H(m,n,tj)= 2 2 ﬁ(k’l’tj)ei21rmk/Nei21rnl/N ,

k=0 =0
_ 1 N-IN=1 . ,
H(k,l,tj)z—— 2 2 H(m,n,tj)e—127rmk/Ne—z21rn1/N .

NZ m=0n=0
(19)

Recalling that the selected area has the dimensions
A=L?=(Ndx)* the wave vector is given by
q=2mw/L(k,]) with k,/=0,...,N—1. The Fourier
transforms H(k,]) are complex numbers with
H*k,)=H(—k,—I).

The squares of the absolute values of the Fourier com-
ponents are averaged over time according to

M
(AU == 3 B . 20
i=1

With our choice of normalization, Parseval’s theorem
demands

N—1N-1 _ 1 NZ1IN-—1
S 3 HikLy)=—5 3 3 H*m,nt) 21
k=0 [=0 N* n=on=0

which proves useful as a test for the numerically deter-
mined mean square amplitudes of the Fourier transform
compared to the original height data.

Sample preparation

Giant vesicles were prepared from a chloroform-
methanol (2:1) solution of stearoyl-oleoyl-
phosphatidylcholine (SOPC) (Avanti Polar Lipids, Ala-
baster) at a concentration of 10 mg/ml. 40 ml of the
solution was dried on a Teflon disk and desiccated under
vacuum for 2 h. 100 mM sucrose solution was then add-
ed to the Teflon disk in a glass beaker and left for 24 h at
40°C. In this time the lipid detaches from the bottom
and forms closed vesicles. Alternatively, the electrical
swelling method that generally yields larger vesicles was
applied [30]. A stock solution of lipid was dried onto in-
dium tin oxide (ITO) glass cover slips (Balzers, Lichten-
stein). After desiccation the cover slips were placed in a
sucrose solution and an ac field of 18 V/cm, 10 Hz was
applied for 1 h.

Glass cover slips (20X20X0.17 mm?®) were covered
with a thin film of MgF, by MgF,-vapor deposition in
vacuum. The deposition was carried out at a pressure of
10~ ¢ atm with a deposition rate of 1 nm/s and a substra-
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tum temperature of 380°C. The film thickness was mea-
sured by a quartz thickness monitor. The refractive in-
dex and thickness of the MgF, film were cross-checked
by quantitative evaluation of RICM images as described
previously [13]. The MgF, covered coverslip was then
mounted onto the measuring chamber consisting of a thin
Teflon frame embedded in a temperature-controlled
copper block.

The MgF, surface was covered with bovine serum al-
bumin (BSA) to prevent strong adhesion. A solution of 5
pg/ml BSA was adsorbed onto the MgF, substrate for 15
min and then rinses afterwards. The MgF, surface
remains covered with a thin layer of BSA after this treat-
ment (20 A). A suspension of vesicles was then added
onto the substrate and the adhesion observed with
RICM.

RESULTS

Equilibrium contact shape

Figure 4(a) shows a micrograph of a SOPC vesicle that
weakly adheres to a BSA covered MgF, surface. Only
the substrate adjacent part is imaged, showing clearly the
adhering flattened region surrounded by fringes that cor-

1804 (b)
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FIG. 4. (a) RIC micrograph of a giant phospholipid vesicle
above a BSA coated MgF, substrate. The fringes at the edge of
the round contact area arise from the up-bending profile. (b) In-
tensity scan through center of contact area. The momentary in-
tensity of one frame reflects the distorted contour of the mem-
brane by thermal fluctuations.
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respond to the edge contour. The outer contour with di-
ameter D, is not shown but can be measured by observ-
ing the vesicle under phase contrast microscopy. A tran-
sient intensity profile through the center of Fig. 4(a) is
given in Fig. 4(b). The equilibrium contour of the vesicle
can be determined as follows. First from the middle part
of Fig. 4(b), where the intensities belong to the zero order
fringe, the substrate vesicle distance s (x) can be directly
calculated by applying Eq. (18). The resulting height
profiles are then averaged over 64 frames. Figure 5(a)
shows the profile for the region around one edge. The
adhering part appears fairly flat since the undulations are
averaged out. On the right hand side of the plot the
height function exhibits extrema corresponding to higher
order fringes. These extrema do not reflect the actual
profile; rather they can be used to obtain additional data
points [H in Fig. 5(b)], with the assumption that the sur-
face bends monotonically away from the surface. The ex-
trema correspond to heights

—JA
hj—E+arccos(8,—82) (22)

120+
100

80—

height [nm]
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404

(a)

800~

600

400

height [nm]
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FIG. 5. (a) Edge contour of a vesicle obtained by converting
the intensity profiles into heights [Eq. (18)] and taking the aver-
age over 64 height profiles. The dark rectangular data points
correspond to the regime s < 100 nm; the open data points cor-
respond to higher order fringes and are not further considered.
A contact angle and a circle are tentatively fitted into the con-
tact contour. Note that the scales are distorted. The measured
contact angle is extremely flat ($¢~1°). (b) Same contour as (a)
shown on a larger scale. The extrema of the higher order
fringes in (a) are represented here by single data points separat-
ed by 104 nm in the vertical direction.
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FIG. 6. Schematic view of a vesicle above a substrate. D,, is
the vesicle diameter, D ;4 is the diameter of the contact region,
Jg is the effective contact angle in the azimuthal, 1/R, gives
the curvature at the contact edge, and (s ) is the mean height of
the vesicle above the substrate.

with j an integral number and n, 8, and 8, as defined in
Eq. (17). The result for the contour in Fig. 5(a) is depict-
ed in Fig. 5(b). Note that the scales are different in x and
s. Therefore the real shape of the measured contour is
extremely flat.

Figure 5(a) shows how the contact angle is determined
by fitting a straight line to the edge contour. The contact
angle in this region close to the surface is of the order of
1°. In Fig. 5(b) it can be seen that the contour bends
away very strongly and that measuring the contact angle
on a larger scale would lead to considerably larger con-
tact angles.

Figures 5(a) and 5(b) also depict a best fit of a circle
into the bending edge [dotted line in Fig. 5(a); note again
the distortion due to different scales]. Fitting the radius
of curvature is, however, often obscured by fluctuations
in the membrane profile that remain even after averaging.
Also we obtain radii of curvature R, of the same magni-
tude as the diameter of the vesicle, implying that Eq. (14)
cannot be applied.

In summary, the averaged micrographs yield the pa-
rameters depicted schematically in Fig. 6: the diameter
D , of the adhering area, the diameter D,, of the vesicle
in the midplane, the mean separation distance (s ), and
the effective contact angle J.5. The measured values for
several vesicles are listed in Table 1.

TABLE 1. Values of the parameters defined in Fig. 6 for nine
different vesicles.

Dy M, Degr (s) o v & §||

(um) (um) (deg) (nm) (107%I/m? (10° J/m* (nm) (nm)
69 60 40.8 419 15.0 6.2 746
52 17 1.4 384 87.3 58.3 43 758
58 10 2.1 36.7 51.1 499 3.7 115
55 18 2.1 395 4.2 4.0 15.1 723
88 45 0.8 48.7 8.1 6.8 11.0 792
62 27 1.1  39.6 14.5 17.6 8.8 700
53 15 0.7 40.8 17.3 13.1 8.8 870
83 64 2.1 31.1 27.3 16.1 8.8 733
91 31 09 36.0 15.9 16.8 9.7 740
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Static fluctuation spectrum

In the flat part of the adhering vesicle the membrane
fluctuations can be treated as a superposition of plane
waves. This approximation is valid for wavelengths
shorter than the diameter of the contact area. We took
sequences of undulation profiles and analyzed a square re-
gion A =L XL of the adhering part. The measured in-
tensities were transformed into heights s(x;,x,) and a
numerical Fourier transformation was carried out as de-
scribed above [Egs. (19) and (20)]. Figure 7(a) shows the
spectrum of the fluctuations. The mean square ampli-
tudes (A z(q,‘l,qx2 )} of the two-dimensional field are plot-

ted as a function of q=\/qfl +q32 .

data points are obtained for most g values.) The data can
be fitted by Eq. (4) with V"' and o being adjustable pa-
rameters. The values for the membrane tension o and
the second derivative of the interaction potential are list-
ed in Table I.

The fit shown in Fig. 7(a) deviates for g values larger
than 2 um™!. In this high wave vector regime the experi-
mental amplitudes are too small for two reasons. First,

(Hence multiple

(@)

150~

100

C(x) [om’)

-6
5x10

(b)

FIG. 7. (a) The mean square amplitudes of the Fourier com-
ponents plotted as a function of the wave vector g. The power
spectrum is fitted according to Eq. (4), yielding the second
derivative of the interaction potential, and the membrane ten-
sion is obtained. The discrepancy between measured and calcu-
lated data at large wave vectors is due to limited spatial and
time resolution. (b) Autocorrelation function obtained from (a)
by Fourier transformation. The vertical roughness is obtained
from C(0) and the parallel correlation length is obtained from
the single exponential fit to the tail region of the correlation
function.
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the relaxation times of the modes decrease strongly with
increasing ¢ and the short-wavelength fluctuations are
averaged out owing to the finite integration time of the
CCD camera [8]. Secondly, the resolution of the micro-
scope is limited, which means that the imaged amplitude
of a sinusoidal intensity profile is somewhat smaller than
the true amplitude as the optical resolution limit is
reached. A correction of the amplitudes of the experi-
mental power spectrum can be carried out to yield better
agreement, if the relaxation times of the modes and the
optical transfer function are known. In this case the
bending modulus K. could be measured accurately as
well. We will address the dynamics of the fluctuations
and measurement of the relaxation times in a forthcom-
ing article. In this article we have taken the bending
modulus K, =35kT for SOPC as measured by other tech-
niques [7,11].

It is worthwhile to look at the fluctuations also in
terms of the correlation function. The autocorrelation
function can be obtained simply by Fourier transforma-
tion of (hqz). The autocorrelation function calculated by
Fourier transformation is identical to the autocorrelation
obtained by directly correlating the undulation profile
h(x{,x,), as it should be. Figure 7(b) shows the auto-
correlation function as obtained from Fig. 7(a). The au-
tocorrelation function exhibits a steady decay without os-
cillations into negative values. An exponential function
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FIG. 8. (a) Vertical roughness obtained from the autocorrela-
tion C(x) as a function of the parameters obtained from best fits
of the power spectrum [Eq. (7)]. (b) Lateral correlation length
obtained from the autocorrelation as a function of the parame-
ters obtained from best fits of the powerspectrum [Eq. (8)].
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is fitted to the asymptotic decay that yields the lateral
correlation length §,. The vertical roughness is defined
by the value C(0)=£2. Both values are listed in Table I.

As discussed in the theoretical section there are asymp-
totic equations which allow one to express &, and §, in
terms of the parameters V', o, and K_.. For tensions
larger than the crossover tension o*=1"4K_ V"' Egs. (7b)
and (8b) apply. As can be seen from Table I, the mea-
sured values of o are in fact about 20 times larger than
the cross over tension. Figures 8(a) and 8(b) demonstrate
the validity of Egs. (7b) and (8b). The data in Fig. 8(b)
deviate for higher tension, which might possibly indicate
that we do not obtain the true lateral correlation length
for high tension by an exponential fit. In general Fig. 8
should be understood as a test of self-consistency of fit
parameters obtained from data analysis in Fourier and
real space respectively.

Tension-induced adhesion

A key relation in the theory of steric interaction is the
behavior of the vertical roughness as a function of separa-
tion distance and tension. In Fig. 9 we plotted the experi-
mental vertical roughness versus the logarithmic expres-
sion Eq. (11b) of the separation distance in units of the
crossover length [, =V'kT /2mo. The mean separation
distances and corresponding tensions have been taken as
determined from the static fluctuation spectrum of the
vesicles. The dashed line indicates the theoretical predic-
tion. The functional dependence as given by Eq. (11) is
roughly obeyed. However, the data fall systematically
below the theoretical values. A possible explanation is
that the constrains of finite camera integration time and
finite optical resolution average out the undulations of
high spatial frequency and therefore result in the mea-
surement of an altogether smaller vertical roughness.

We may now compare the experimental data with the
theory of undulating membranes under tension. Figure
10 depicts the mean separation distance {s(o)) as a
function of membrane tension. The separation distance
decreases slightly with higher tension as indicated by the

r"
15— I
r"
g T
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= b~ H—E—t
v T e
,-
L.
L.
[ ke
T T T T
0 5 10 15

1gsqrt[ (s} /21 +(1/8) In ({s) A1) ]

FIG. 9. Vertical roughness plotted versus the separation dis-
tance s(x). The roughness behavior follows the relation pre-
dicted by Monte Carlo studies [Eq. (11), dashed line with slope
1], but shows systematic deviations towards smaller roughness
due to the limited spatial and time resolution of the camera.
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FIG. 10. The membrane separation distance as a function of
the membrane tension. The dotted line depicts the theoretical
values calculated by superimposing vdW interaction, steric in-
teraction, and gravitation (compare also Fig. 2). The data, how-
ever, follow a weaker dependence of the separation distance
with tension as indicated by the dashed line.

straight dashed line. The scatter of the data is consider-
able though. In fact, while the relative displacement can
be measured very accurately within 1 nm, the measure-
ment of the absolute separation distance depends on the
precise knowledge of the thickness and refractive index of
the deposited MgF, layer and is therefore less accurate.
However, it is worthwhile comparing the data with the
theoretical values expected from the superposition of the
steric interaction and vdW interaction. We assume the
following material constants. The Hamaker constant for
lipid interacting with MgF, in water can be estimated us-
ing the Lifschitz approximation [15]. Taking the values
Niipia = 1.486, €4;q(0)=2.1 for the membrane and
nMgF2=1.386, sMgF2(0)=7 for magnesium fluoride, the
zero-frequency part of the Hamaker constant is calculat-
ed to be Ax(w=0)=2.6X10"2 J and Agz(w>0)
=2.2X1072! J. We furthermore assume an ion concen-
tration of 1073 molar, taken from the small but finite
solubility of MgF,. The bending modulus was measured
independently, K, =35kT, as mentioned above. In order
to take the gravitational field into account, we assume an
average vesicle of diameter D;,=40 yum and a contact
area of diameter D , =20 um. The density difference of a
100 mM sucrose solution with respect to a 100 mM inosi-
tol solution is given by Ap=0.007 g/cm>. The prefactor
for the steric interaction, Eq. (12), was taken as
b;=0.085, as derived in the theoretical section. Eventu-
ally we obtain from the minimum of the total interaction
potential (compare Fig. 2) the dashed line indicated in
Fig. 10. Clearly the theoretical calculation predicts a
stronger dependence of the separation distance on the
membrane tension. However, the calculation also shows
that the superposition model predicts mean separation
distances in the correct order of magnitude as measured.
It must be noted that the theory holds no adjustable pa-
rameter and no additional assumptions are needed.

Adhesion energy

The adhesion energy W (o) can be determined from
the equilibrium contact angle using the Young-Dupre



51 FLUCTUATION ANALYSIS OF TENSION-CONTROLLED. ..

7
7
e
s R
R +//'
g10° -
=
L
<« v
310'9 -~ ++
o
7
rd
b
P
—— — ———
-5 8 x 10™°
10
¢ [/mi

FIG. 11. The adhesion energy calculated from the measured
contact angles [Eq. (15)] as a function of the membrane tension
depicted in a double logarithmic plot. The dashed line indicates
a slope 2.

equation, Eq. (15). In Fig. 11 we show the adhesion ener-
gy as obtained from the contact angle and the measured
membrane tension o. The plot is given on a double loga-
rithmic scale and indicates a quadratic dependence of the
adhesion energy as a function of tension (the straight line
has slope 2). The strength of the adhesion energy is
found to be 107°-10"% J/m? and therefore larger than
the depth of the minimum obtained from the superposi-
tion of vdW and steric interaction alone. Hence it must
be assumed that gravity determines the measured
adhesion energy. However, the discrepancy remains un-
resolved so far.

Our results disagree with previous measurements of
vesicle-vesicle adhesion where constant contact angle of
the order 35° were measured and therefore a linear depen-
dence of adhesion energy and tension established [10,12].
However, it must be noticed that these experiments differ
in at least two important facts. First of all the strength of
the vdW interaction varies due to different buffer condi-
tions as well as due to the fact that in the latter case two
vesicles rather than a vesicle and a wall interact. The van
der Waals interaction for two membranes of thickness d
scales at large distances V., 4w ~6d%/s* (s >>d), in con-
trast to the case of a membrane interacting with a solid
surface, where V 4w ~2d /s* (s >>d) is found. Secondly,
gravity has in our experiments an effect on the membrane
tension as well as the overall shape of the vesicle. In fact,
the shape of the vesicle and also the measured contact an-
gles can be dependent on gravitational effects.

CONCLUSION

We have shown that reflection interference contrast
microscopy is a powerful technique for quantitative stud-
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ies of vesicle adhesion. The contact contour of several
SOPC vesicles adhering to BSA coated MgF, substrates
was determined. In the flat contact zone of the mem-
brane an analysis of the static out-of-plane fluctuations
yields the membrane tension and the second derivative of
the interaction potential. The autocorrelation function of
the undulations yielded the vertical roughness and the la-
teral correlation length. Altogether six parameters can
be extracted independently, i.e., the membrane tension
and the harmonic approximation of the interaction po-
tential (or alternatively the lateral correlation length &,
and the vertical roughness amplitude £,), as well as the
membrane-substrate separation distance, the contact an-
gle, the diameter of the vesicle, and the diameter of the
adhesion area.

Of these parameters the relative displacement and
therefore the static fluctuation spectra can be measured
very precisely, whereas the absolute separation distance
can only be measured approximately. The measured
roughness versus separation distance indicates clearly a
tension-dominated fluctuation behavior, which is in good
agreement with the predicted logarithmic dependence on
the separation distance. The quantitative comparison of
the dependence of the membrane-substrate separation
distance on the membrane tension with the superposition
model yields the correct order of magnitude for the sepa-
ration distances but a weaker dependence on the tension.
Furthermore, the adhesion energies were found to depend
quadratically on the membrane tension.

Conceptually the following problem remains unsolved.
So far we cannot relate the equilibrium shape of the
adhering vesicle to the static fluctuation spectrum. The
measurable membrane tension is expected to depend on
the shape of the vesicle, i.e., the volume and the surface
area. On the other hand the membrane tension deter-
mines the adhesion energy through the steric interaction
and the adhesion energy in turn affects the equilibrium
contour of the vesicle. In a self-consistent description the
effective membrane tension will be the key variable con-
trolling the steric interaction and the equilibrium shape.
We hope that this article will encourage future theoreti-
cal work.

ACKNOWLEDGMENTS

This project was funded by the DFG through the SFB
266. T.F. is grateful for support from the Alexander von
Humboldt Stiftung. We thank E. Evans, G. Gompper,
W. Helfrich, J. Israelachvili, M. Kraus, R. Lipowsky, R.
Netz, and U. Seifert for many helpful discussions. We
are particularly grateful to M. Kraus, R. Lipowsky, and
U. Seifert for sharing their unpublished results with us.

[1] W. Helfrich, Z. Naturforsch. Teil A 33, 305 (1978).

[2] D. R. Nelson, in Proceedings of the Fifth Jerusalem Winter
School, edited by D. R. Nelson, T. Piran, and S. S. Wein-
berg (World Scientific, Singapore, 1989); R. Lipowsky, Na-
ture 349, 471 (1991).

[3] E. Sackmann, in Structure and Dynamics of Membranes,
edited by R. Lipowsky and E. Sackmann (Elsevier, Am-
sterdam, 1994), Vol. 1; A. Zilker, M. Ziegler, and E. Sack-
mann, Phys. Rev. A 46, 7998 (1992).

[4] M. Mutz and W. Helfrich, Phys. Rev. Lett. 62, 2881



4536 RADLER, FEDER, STREY, AND SACKMANN 51

(1989).

[5] M. B. Schneider, J. T. Jenkins, and W. W. Webb, J. Phys.
(Paris) 45, 1457 (1984).

[6]S. T. Milner and S. A. Safran, Phys. Rev. A 36, 4371
(1987). t

[7] H. P. Duwe and E. Sackmann, Physica A 163, 410 (1990).

[8]1J. F. Faucon, M. D. Mitov, P. Meleard, I. Bivas, and P.
Bothorel, J. Phys. (Paris) 50, 2389 (1989).

[9] C. Safinya, D. Roux, G. S. Smith, S. K. Sinha, P. Dimon,
N. A. Clark, and A. M. Bellocq, Phys. Rev. Lett. 57, 2718
(1986); C. R. Safinya, E. B. Sirota, D. Roux, and G. S.
Smith, ibid. 62, 1134 (1989).

[10] R. M. Servuss and W. Helfrich J. Phys. (Paris) 50, 809
(1989).

[11] E. Evans and V. A. Parsegian, Ann. N.Y. Acad. Sci. 416,
13 (1983); E. Evans and M. Metcalfe, Biophys. J. 46, 423
(1984); E. Evans and W. Rawicz, Phys. Rev. Lett. 64,
2094 (1990).

[12] S. M. Bailey, S. Chiruvolu, J. N. Israelachvili, and J. A. N.
Zasadzinski, Langmuir 6, 1326 (1990).

[13]J. Rédler and E. Sackmann, J. Phys. (France) II 3, 727
(1993).

[14] U. Seifert and R. Lipowsky, Phys. Rev. A 42, 4768 (1990);
K. Berndl, J. Kis, R. Lipowsky, E. Sackmann, and U.
Seifert, Europhys. Lett. 13, 659 (1990); L. Miao, B. Four-
cade, M. Rao, and M. Wortis, Phys. Rev. A 43, 6843
(1991).

[15]1J. N. Israelachvili, Intermolecular and Surface Forces
(Academic, London, 1991).

[16]1J. Mahanty and B. W. Ninham, Dispersion Forces
(Academic, London, 1976).

[17] R. Lipowsky, in Structure and Dynamics of Membranes,
[31.

[18] R. Lipowsky and S. Leibler, Phys. Rev. Lett. 56, 2541
(1986).

[19] W. Helfrich and R.-M. Servuss, Nuovo Cimento D 3, 137
(1984).

[20] R. Lipowsky and B. Zielinska, Phys. Rev. Lett. 62, 1572
(1989).

[21] W. Janke and H. Kleinert, Phys. Rev. Let. 58, 144 (1987).

[22] G. Gompper and D. M. Kroll, Europhys. Lett. 9, 59
(1989).

[23] R. Podgornik and V. A. Parsegian, Langmuir 8, 557
(1992).

[24] R. Netz, Phys. Rev. E 51, 2286 (1995).

[25] R. Netz and R. Lipowsky, Europhys. Lett. (to be pub-
lished).

[26] S. Grotehans and R. Lipowsky, Phys. Rev. A 41, 4575
(1990).

[27] W. Helfrich, in Phase Transitions in Soft Condensed
Matter, edited by T. Riste and D. Sherrington (Plenum,
New York, 1989), p. 271.

[28] E. Evans, Langmuir 7, 1900 (1991).

[29]R. M. A. Azzam and N. M. Bashara, Ellipsometrie and
Polarized Light (North-Holland, Amsterdam, 1975).

[30] M. I. Angelowa and D. S. Dimitrow, Mol. Cryst. Liq.
Cryst. 152, 89 (1987).



180 ( b )

160

140 -

120

intensity

100

80+

T T T T T T
0 10 20 40 50

30
X [um]
FIG. 4. (a) RIC micrograph of a giant phospholipid vesicle
above a BSA coated MgF, substrate. The fringes at the edge of
the round contact area arise from the up-bending profile. (b) In-
tensity scan through center of contact area. The momentary in-
tensity of one frame reflects the distorted contour of the mem-
brane by thermal fluctuations.



